The explain() method shows the execution plan for a DataStore query, helping you understand what operations will be performed and what SQL will be generated.
Basic Usage
from chdb import datastore as pd
ds = pd.read_csv("sales.csv")
query = (ds
.filter(ds['amount'] > 1000)
.groupby('region')
.agg({'amount': ['sum', 'mean']})
.sort('sum', ascending=False)
)
# View execution plan
query.explain()
Syntax
explain(verbose=False) -> None
Parameters:
| Parameter | Type | Default | Description |
|---|
verbose | bool | False | Show additional metadata |
Standard Output
================================================================================
Execution Plan (in execution order)
================================================================================
[1] 📊 Data Source: file('sales.csv', 'csv')
Operations:
────────────────────────────────────────────────────────────────────────────────
️ Segment 1 [chDB] (from source): Operations 2-5
️ Note: SQL operations after Pandas ops use Python() table function
[2] 🚀 [chDB] WHERE: "amount" > 1000
[3] 🚀 [chDB] GROUP BY: region
[4] 🚀 [chDB] AGGREGATE: sum(amount), avg(amount)
[5] 🚀 [chDB] ORDER BY: sum DESC
────────────────────────────────────────────────────────────────────────────────
Final State: 📊 Pending (lazy, not yet executed)
└─> Will execute when print(), .to_df(), .execute() is called
────────────────────────────────────────────────────────────────────────────────
Generated SQL Query:
────────────────────────────────────────────────────────────────────────────────
SELECT region, SUM(amount) AS sum, AVG(amount) AS mean
FROM file('sales.csv', 'csv')
WHERE "amount" > 1000
GROUP BY region
ORDER BY sum DESC
================================================================================
Icons Legend
| Icon | Meaning |
|---|
| 📊 | Data source |
| 🚀 | chDB (SQL) operation |
| 🐼 | pandas operation |
Verbose Output
query.explain(verbose=True)
Verbose mode shows additional details for each operation, including the full SQL query with internal row-order tracking mechanisms.
Three Execution Phases
The explain output shows operations in three phases:
Phase 1: SQL Query Building (Lazy)
Operations that compile to SQL:
1. Source: file('sales.csv', 'CSVWithNames')
2. Filter: amount > 1000
3. GroupBy: region
4. Aggregate: sum(amount)
Phase 2: Execution Point
When a trigger occurs:
5. Execute SQL -> DataFrame
Trigger: to_df() called
Phase 3: DataFrame Operations
Operations after execution:
6. [pandas] pivot_table(...)
7. [pandas] apply(custom_func)
Understanding the Plan
Source Information
Source: file('sales.csv', 'CSVWithNames')
file() - ClickHouse file() table function
'CSVWithNames' - File format with header
Other source types:
Source: s3('bucket/data.parquet', ...)
Source: mysql('host', 'db', 'table', ...)
Source: __dataframe__ (pandas DataFrame input)
Filter Operations
Filter: amount > 1000 AND status = 'active'
Shows the WHERE clause that will be applied.
GroupBy and Aggregate
GroupBy: region, category
Aggregate: sum(amount), avg(amount), count(id)
Shows GROUP BY columns and aggregation functions.
Sort Operations
Sort: sum DESC, region ASC
Shows ORDER BY clause.
Limit Operations
Shows LIMIT and OFFSET.
Engine Information
When using verbose mode, you can see which engine will be used:
Filter: amount > 1000
- Engine: chdb
- Pushdown: Yes
Apply: custom_function
- Engine: pandas
- Pushdown: No
Pushdown
- Yes: Operation will be executed at the data source (SQL)
- No: Operation requires pandas execution
Examples
Simple Query
ds = pd.read_csv("data.csv")
ds.filter(ds['age'] > 25).explain()
================================================================================
Execution Plan (in execution order)
================================================================================
[1] 📊 Data Source: file('data.csv', 'csv')
Operations:
────────────────────────────────────────────────────────────────────────────────
️ Segment 1 [chDB] (from source): Operations 2-2
[2] 🚀 [chDB] WHERE: "age" > 25
────────────────────────────────────────────────────────────────────────────────
Generated SQL Query:
────────────────────────────────────────────────────────────────────────────────
SELECT * FROM file('data.csv', 'csv') WHERE "age" > 25
================================================================================
Complex Aggregation
query = (ds
.filter(ds['date'] >= '2024-01-01')
.filter(ds['amount'] > 100)
.select('region', 'category', 'amount')
.groupby('region', 'category')
.agg({
'amount': ['sum', 'mean', 'count']
})
.sort('sum', ascending=False)
.limit(20)
)
query.explain()
================================================================================
Execution Plan (in execution order)
================================================================================
[1] 📊 Data Source: file('sales.csv', 'csv')
Operations:
────────────────────────────────────────────────────────────────────────────────
️ Segment 1 [chDB] (from source): Operations 2-8
[2] 🚀 [chDB] WHERE: "date" >= '2024-01-01'
[3] 🚀 [chDB] WHERE: "amount" > 100
[4] 🚀 [chDB] SELECT: region, category, amount
[5] 🚀 [chDB] GROUP BY: region, category
[6] 🚀 [chDB] AGGREGATE: sum(amount), avg(amount), count(amount)
[7] 🚀 [chDB] ORDER BY: sum DESC
[8] 🚀 [chDB] LIMIT: 20
────────────────────────────────────────────────────────────────────────────────
Generated SQL Query:
────────────────────────────────────────────────────────────────────────────────
SELECT region, category,
SUM(amount) AS sum,
AVG(amount) AS mean,
COUNT(amount) AS count
FROM file('sales.csv', 'csv')
WHERE "date" >= '2024-01-01' AND "amount" > 100
GROUP BY region, category
ORDER BY sum DESC
LIMIT 20
================================================================================
Mixed SQL and pandas
When operations cannot be fully pushed to SQL, the plan shows multiple segments:
query = (ds
.filter(ds['age'] > 25) # SQL
.groupby('city') # SQL
.agg({'salary': 'mean'}) # SQL
.apply(lambda x: x * 1.1) # pandas (triggers segment split)
.filter(ds['mean'] > 50000) # SQL (new segment)
)
query.explain()
================================================================================
Execution Plan (in execution order)
================================================================================
[1] 📊 Data Source: file('data.csv', 'csv')
Operations:
────────────────────────────────────────────────────────────────────────────────
️ Segment 1 [chDB] (from source): Operations 2-4
️ Segment 2 [Pandas] (on DataFrame): Operation 5
️ Segment 3 [chDB] (on DataFrame): Operation 6
️ Note: SQL operations after Pandas ops use Python() table function
[2] 🚀 [chDB] WHERE: "age" > 25
[3] 🚀 [chDB] GROUP BY: city
[4] 🚀 [chDB] AGGREGATE: avg(salary)
[5] 🐼 [Pandas] APPLY: lambda
[6] 🚀 [chDB] WHERE: "mean" > 50000
================================================================================
Debugging with explain()
Check Filter Logic
# Verify your filter is correct
query = ds.filter((ds['age'] > 25) & (ds['city'] == 'NYC'))
query.explain()
# Output shows: Filter: age > 25 AND city = 'NYC'
Verify Column Selection
# Check column pruning
query = ds.select('name', 'age').filter(ds['age'] > 25)
query.explain()
# Output shows: SELECT name, age FROM ... WHERE age > 25
Understand Aggregation
# Check aggregation functions
query = ds.groupby('dept').agg({'salary': ['sum', 'mean', 'std']})
query.explain()
# Output shows: SELECT dept, SUM(salary), AVG(salary), stddevPop(salary)
Best Practices
1. Check Before Executing Large Queries
# Always explain first for large data
query = ds.complex_pipeline()
query.explain() # Check plan
# If plan looks correct
result = query.to_df() # Execute
2. Use Verbose for Debugging
# When something seems wrong
query.explain(verbose=True)
# Shows engine selection and pushdown info
3. Compare with to_sql()
# explain() shows the plan
query.explain()
# to_sql() shows just the SQL
print(query.to_sql())
# Both useful for different purposes
4. Check Pushdown Status
# Verbose mode shows if operations are pushed down
query.explain(verbose=True)
# If Pushdown: No, operation runs in pandas
# Consider restructuring query for better performance